Improving relevance feedback-based query expansion by the use of a weighted word pairs approach

نویسندگان

  • Francesco Colace
  • Massimo De Santo
  • Luca Greco
  • Paolo Napoletano
چکیده

In this article, the use of a new term extraction method for query expansion (QE) in text retrieval is investigated. The new method expands the initial query with a structured representation made of weighted word pairs (WWP) extracted from a set of training documents (relevance feedback). Standard text retrieval systems can handle a WWP structure through custom Boolean weighted models. We experimented with both the explicit and pseudorelevance feedback schemas and compared the proposed term extraction method with others in the literature, such as KLD and RM3. Evaluations have been conducted on a number of test collections (Text REtrivel Conference [TREC]-6, -7, -8, -9, and -10). Results demonstrated that the QE method based on this new structure outperforms the baseline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

A Query Expansion Method based on a Weighted Word Pairs Approach

In this paper we propose a query expansion method to improve accuracy of a text retrieval system. Our technique makes use of explicit relevance feedback to expand an initial query with a structured representation called Weighted Word Pairs. Such a structure can be automatically extracted from a set of documents and uses a method for term extraction based on the probabilistic Topic Model. Evalua...

متن کامل

Weighted Word Pairs for query expansion

This paper proposes a novel query expansion method to improve accuracy of text retrieval systems. Our method makes use of a minimal relevance feedback to expand the initial query with a structured representation composed of weighted pairs of words. Such a structure is obtained from the relevance feedback through a method for pairs of words selection based on the Probabilistic Topic Model. We co...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Word Distribution Analysis for Relevance Ranking and Query Expansion

Apart from the frequency of terms in a document collection, the distribution of words plays an important role in determining the relevance of documents for a given search query. In this paper, word distribution analysis as a novel approach for using descriptive statistics to calculate a compressed representation of word positions in a document corpus is introduced. Based on this statistical app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JASIST

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015